A unified FPT Algorithm for Width of Partition Functions
نویسندگان
چکیده
During the last decades, several polynomial-time algorithms have been designed that decide if a graph has treewidth (resp., pathwidth, branchwidth, etc.) at most k, where k is a fixed parameter. Amini et al. (to appear in SIAM J. Discrete Maths.) use the notions of partitioning-trees and partition functions as a generalized view of classical decompositions of graphs, namely tree-decomposition, path-decomposition, branch-decomposition, etc. In this paper, we propose a set of simple sufficient conditions on a partition function Φ, that ensures the existence of a linear-time explicit algorithm deciding if a set A has Φ-width at most k (k fixed). In particular, the algorithm we propose unifies the existing algorithms for treewidth, pathwidth, linearwidth, branchwidth, carvingwidth and cutwidth. It also provides the first Fixed Parameter Tractable linear-time algorithm deciding if the q-branched treewidth, defined by Fomin et al. (Algorithmica 2007), of a graph is at most k (k and q are fixed). Our decision algorithm can be turned into a constructive one by following the ideas of Bodlaender and Kloks (J. of Alg. 1996). Key-words: Tree-decomposition, FPT-algorithm, width-parameters, characteristics. This work was partially funded by the support of CONICYT via Anillo en Redes ACT08, and of the European projects 1ST FET AEOLUS and COST 293 GRAAL. ∗ LIFO, ENSI-Bourges, Université d’Orléans, Bourges, France. {[email protected]@sophia.inria.fr † MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France. {[email protected] in ria -0 03 21 76 6, v er si on 1 15 S ep 2 00 8 Algorithme FPT unifié pour le calcul des fonctions de partition Résumé : Depuis une vingtaine d’annes, de nombreux algorithmes polynomiaux ont été conçu pour les problèmes consistant à décider si la largeur arborescente (resp., largeur linéaire, largeur en branche, etc.) d’un graphe est au plus k, où k est un paramètre fixé. Amini et al. (à parâıtre dans SIAM J. Discrete Maths.) utilisent les notions d’arbre de partition et de fonctions de partition pour généraliser les décompositions “classiques” des graphes, comme par exemple la décomposition arborescente, la décomposition linéaire, la décomposition en branches, etc. Dans ce papier, nous proposons des conditions simples et suffisantes qui, si elles sont satisfaites par une fonction de partition Φ, suffisent à assurer l’existence d’un algorithme linéaire qui décide si un ensemble A possède une Φ-largeur au plus k (k étant fixé). En particulier, l’algorithme que nous proposons unifie les algorithmes existants pour la largeur arborescente, la largeur linéaire, la largeur en branche, etc. Notre algorithme est également le premier algorithme FPT décidant en temps linéaire si la largeur arborescente q-branchée, définie par Fomin et al. (à parâıtre dans Algorithmica), d’un graphe est au plus k (k et q étant fixés). Notre algorithme de décision peut être modifié en un algorithme constructif en utilisant les idées de Bodlaender and Kloks (J. of Alg. 1996). Mots-clés : Décomposition arborescente, algorithme FPT, largeurs de graphes, caractéristique. in ria -0 03 21 76 6, v er si on 1 15 S ep 2 00 8 A unified FPT Algorithm for Width of Partition Functions 3
منابع مشابه
An Unified FPT Algorithm for Width of Partition Functions
During the last decades, several polynomial-time algorithms have been designed that decide whether a graph has tree-width (resp., path-width, branch-width, etc.) at most k, where k is a fixed parameter. Amini et al. (Discrete Mathematics’09) use the notions of partitioning-trees and partition functions as a generalized view of classical decompositions of graphs, namely tree decomposition, path ...
متن کاملSimpler Self-reduction Algorithm for Matroid Path-width
Path-width of matroids naturally generalizes better known path-width of graphs, and is NP-hard by a reduction from the graph case. While the term matroid path-width was formally introduced by Geelen–Gerards–Whittle [JCTB 2006] in pure matroid theory, it was soon recognized by Kashyap [SIDMA 2008] that it is the same concept as long-studied so called trellis complexity in coding theory, later na...
متن کاملProbability Generating Functions for Sattolo’s Algorithm
In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...
متن کاملComputability of Width of Submodular Partition Functions
The notion of submodular partition functions generalizes many of well-known tree decompositions of graphs. For fixed k, there are polynomial-time algorithms to determine whether a graph has treewidth, branch-width, etc. at most k. Contrary to these results, we show that there is no sub-exponential algorithm for determining whether the width of a given submodular partition function is at most tw...
متن کاملSVOČ 2009 Computability of Branch-width of Submodular Partition Functions
The notion of submodular partition functions generalizes many of well-known tree decompositions of graphs. For fixed k, there are polynomial-time algorithms to determine whether a graph has tree-width, branch-width, etc. at most k. Contrary to these results, we show that there is no sub-exponential algorithm for determining whether the width of a given submodular partition function is at most t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008